分治算法

在计算机科学中,分治法是一种很重要的算法。
字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)。

算法基本思想 理念

分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

适用的情况:

  1. 该问题的规模缩小到一定的程度就可以容易地解决
  2. 该问题可以分解为若干个规模较小的相同问题。
  3. 利用该问题分解出的子问题的解可以合并为该问题的解;
  4. 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;

第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、

第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。

第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

算法执行逻辑

  1. 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题。
  2. 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题。3. 合并:将各个子问题的解合并为原问题的解。

流程图

伪代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
Divide-and-Conquer(P):
if |P|≤n0:
return ADHOC(P)

for i←1 to k
yi ← Divide-and-Conquer(Pi)

T ← MERGE(y1,y2,...,yk)
return(T)

ADHOC(P):
return f(P)

注:

  1. 其中|P|表示问题P的规模
  2. n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。
  3. ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。
  4. 算法MERGE(y1,y2,…,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,…,Pk的相应的解y1,y2,…,yk合并为P的解

算法复杂度

一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:

1
T(n)= k*T(n/m)+f(n)

分治法解题例子 TODO 需要扩展

(1)二分搜索
(2)大整数乘法
(3)Strassen矩阵乘法
(4)棋盘覆盖
(5)合并排序
(6)快速排序
(7)线性时间选择
(8)最接近点对问题
(9)循环赛日程表
(10)汉诺塔

算法备注

依据分治法设计程序时的思维过程
实际上就是类似于数学归纳法,找到解决本问题的求解方程公式,然后根据方程公式设计递归程序。

1、一定是先找到最小问题规模时的求解方法
2、然后考虑随着问题规模增大时的求解方法
3、找到求解的递归函数式后(各种规模或因子),设计递归程序即可。